$\mathrm{C}(7) \mathrm{H}(17) \mathrm{O}(2)=147 \cdot 7^{\circ}$ for compound (1) and $\mathrm{O}(2)$ and $\mathrm{H}(217)(2 \cdot 58 \AA)$ with $\mathrm{O}(2) \mathrm{H}(217) \mathrm{C}(17)=170 \cdot 5^{\circ}$ for compound(2).

References

Berkovitch-Yellin, Z. \& Leiserowitz, L. (1984). Acta Cryst. B40, 159-165.
Cody, V. (1988). Prog. Clin. Biol. Res. Vol. 280. Plant Flavonoids in Biology and Medicine II: Biochemical, Cellular and Medicinal Properties, pp. 29-44. New York: Alan R. Liss.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Freeman, P. W., Murphy, S. T., Nemorin, J. E. \& Taylor, W. C. (1981). Aust. J. Chem. 34, 1779-1784.

Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Gaydou, E. M. \& Bianchini, J. P. (1978). Bull. Soc. Chim. Fr. pp. 43-47.

Kimura, Y., Okuda, H., Taira, Z., Shof, N., Takemoto, T. \& Arich, S. (1984). Planta Med. pp. 290-295.
Main, P., Woolfson, M. M. \& Germain, G. (1977). multan. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
nagar, A., Gujral, V. K. \& Gupta, S. R. (1979). Phytochemistry, 18, 1245.
Prince, P., Miller, J. A., Fronczek, F. F. \& Gandoiur, R. D. (1989). Acta Cryst. C45, 1086-1087.

Rossi, M., Cantrell, J. S., Farber, A. J., Dyott, T., Carrell, H. L. \& Glusker, J. P. (1980). Cancer Res. 40, 2774-2784.
tanaka, T., Innuma, M. \& Mizuno, M. (1986). Chem. Pharm. Bull. 34, 1667-1671.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Ting, H.-Y., Watson, W. H. \& Dominguez, X. A. (1972). Acta Cryst. B28, 1046-1051.
Wallet, J.-C., Gaydou, E. M. \& Baldy, A. (1989). Acta Cryst. C45, 512-515.
Wallet, J.-C., Gaydou, E. M., Fadlane, A. \& Baldy, A. (1988). Acta Cryst. C44, 357-359.
Wollenweber, E. \& Mann, K. (1986). Biochem. Physiol. Pflanz. 181, 665-669.
WURM, G. \& Geres, U. (1977). Arch. Pharm. Weinheim Ger. 310, 119-128.

Structure of 1,1,4,4-Tetrakis(phenylthio)butane

By George Ferguson* and Branko Kaitner
Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
and Brid M. Dilworth and M. Anthony McKervey
Department of Chemistry, University College, Cork, Ireland

(Received 3 October 1989; accepted 29 November 1989)

Abstract

C}_{28} \mathrm{H}_{26} \mathrm{~S}_{4}, M_{r}=490 \cdot 8\), monoclinic, $P 2_{1} / n, a$ $=9.834$ (2), $\quad b=13.692$ (2), $c=10.261$ (2) $\AA, \quad \beta=$ 112.60 (2) ${ }^{\circ}, V=1275.5 \AA^{3}, Z=2, D_{x}=1.28 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71073 \AA, \mu=3.7 \mathrm{~cm}^{-1}, F(000)=516$. Final $R=0.030$ for 2181 reflections with $I>3 \sigma(I)$. The molecule lies on a crystallographic inversion centre with the central $\mathrm{S}-\mathrm{CH}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}-\mathrm{S}$ moiety maximally extended. Mean distances are $\mathrm{C}_{\text {arom }}-\mathrm{S} 1.777$ (2) and $\mathrm{C}_{s p^{3}}-\mathrm{S} 1.828$ (2) \AA.

Introduction. In a recent communication (Cronin, Dilworth \& McKervey, 1986) on new methods of organic synthesis employing α-chlorosulfides as reaction intermediates we described a convenient procedure whereby an alkyl phenyl sulfide is converted in a two-step sequence into a (phenylthio)acetal. The procedure was also applied to

[^0]several $\alpha \omega$ bis sulfides. In a typical example, 1,4bis(phenylthio)butane was treated with N-chlorosuccinimide to afford the corresponding bis(chlorosulfide) which on exposure to thiophenol with zinc chloride catalysis gave 1,1,4,4-tetrakis(phenylthio)butane (1), a compound previously prepared from 2,5-dimethoxytetrahydrofuran (Cohen, Ritter \& Ouellette, 1982). For many years thioacetals and thioketals have been recognized as valuable intermediates in a wide variety of useful synthetic transformations. The crystal and molecular structure of a simple bifunctional thioacetal has not previously been recorded. Accordingly, having isolated good quality crystals of (1), we determined the crystal and molecular structure.

Experimental. Colorless crystals of (1), $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~S}_{4}$, were grown from ethanol. Accurate cell data and orientation matrix were determined on a CAD-4 © 1990 International Union of Crystallography

Table 1. Positional and thermal parameters with e.s.d.'s in parentheses

	x	y	z	$B\left(\AA^{2}\right)$
S1	$0.46007(4)$	$0.36369(3)$	$0.70517(4)$	$3.275(8)$
S2	$0.25776(4)$	$0.30243(3)$	$0.41978(4)$	$3.940(9)$
C1	$0.3455(2)$	$0.4566(1)$	$0.7286(1)$	$3.00(3)$
C2	$0.4105(2)$	$0.5336(2)$	$0.8171(2)$	$4.47(4)$
C3	$0.3245(2)$	$0.6043(2)$	$0.8449(2)$	$5.78(5)$
C4	$0.1740(2)$	$0.5991(2)$	$0.7832(2)$	$5.24(4)$
C5	$0.1084(2)$	$0.5235(2)$	$0.6938(2)$	$4.69(4)$
C6	$0.1924(2)$	$0.4511(1)$	$0.6674(2)$	$3.99(4)$
C7	$0.4271(2)$	$0.3706(1)$	$0.5184(1)$	$2.95(3)$
C8	$0.4267(2)$	$0.4738(1)$	$0.4637(1)$	$3.03(3)$
C9	$0.2617(2)$	$0.2972(1)$	$0.2482(2)$	$3.27(3)$
C10	$0.3310(2)$	$0.2207(1)$	$0.2113(2)$	$4.48(4)$
C11	$0.3301(2)$	$0.2158(2)$	$0.0754(2)$	$5.62(5)$
C12	$0.2621(2)$	$0.2861(2)$	$-0.0210(2)$	$5.72(5)$
C13	$0.1926(2)$	$0.3614(2)$	$0.0145(2)$	$5.32(5)$
C14	$0.1911(2)$	$0.3674(1)$	$0.1482(2)$	$4.24(4)$

Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: $4 / 3\left[a^{2} B_{11}+\right.$ $\left.b^{2} B_{22}+c^{2} B_{33}+a b \cos \gamma B_{12}+a c \cos \beta B_{13}+b c \cos \alpha B_{23}\right]$.

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Sl}-\mathrm{Cl}$	1.776 (2)	C5-C6	1.382 (3)
S1-C7	1.819 (2)	C7-C8	1.520 (2)
S2-C7	1.837 (1)	C8-C8 ${ }^{\prime}$	1.524 (2)
S2-C9	1.778 (2)	C9-- ${ }^{\text {c }} 10$	1.379 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.378 (2)	C9-C14	$1 \cdot 381$ (2)
$\mathrm{C} 1-\mathrm{C} 6$	$1 \cdot 392$ (2)	C10-C11	1.393 (3)
C2-C3	1.386 (3)	$\mathrm{Cl1-C12}$	$1 \cdot 358$ (3)
C3-C4	1.369 (3)	C12-C13	1.363 (3)
C4-C5	1.370 (3)	C13-C14	$1 \cdot 380$ (3)
$\mathrm{Cl}-\mathrm{SI}-\mathrm{C} 7$	103.89 (7)	S1-C7-C8	$114 \cdot 3$ (1)
C7-S2-C9	101.87 (8)	S2-C7-C8	$113 \cdot 32$ (8)
$\mathrm{Sl}-\mathrm{Cl}-\mathrm{C} 2$	118.6 (1)	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8^{1}$	112.9 (1)
$\mathrm{Sl}-\mathrm{Cl}-\mathrm{C} 6$	$122 \cdot 2$ (1)	S2-C9-C10	120.2 (1)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	119.1 (2)	S2-C9-Cl4	$120 \cdot 8$ (1)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$120 \cdot 3$ (2)	C10-C9-C14	119.0 (2)
C2-C3-C4	$120 \cdot 4$ (2)	C9- $\mathrm{C} 10-\mathrm{Cl1}$	119.8 (2)
C3-C4-C5	119.7 (2)	$\mathrm{C} 10-\mathrm{Cl1}-\mathrm{Cl} 2$	120.5 (2)
C4-C5-C6	120.7 (2)	$\mathrm{C11}-\mathrm{Cl} 2-\mathrm{Cl} 3$	120.0 (2)
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	119.7 (2)	C12-C13-C14	$120 \cdot 5$ (2)
S1-C7-S2	108.10 (9)	C9-C14-C13	$120 \cdot 2$ (2)

Lessinger, Germain, Declercq \& Woolfson, 1982). Refinement was by full-matrix least-squares calculations on F, initially with isotropic and, finally, with anisotropic vibration parameters. Difference maps at various stages of the refinement showed maxima in positions consistent with the expected location of all the H atoms; in the final round of calculations, H atoms were positioned on geometric grounds ($\mathrm{C}-\mathrm{H}$ $0.95 \AA$) and included (as riding atoms), but not refined in the calculations. The final cycles of refinement had 145 variable parameters, $R=0.030$, $w R=0.046, \quad$ goodness-of-fit $1.71, \quad w=1 /\left[\sigma^{2} F_{o}+\right.$ $\left.0.03\left(F_{o}\right)^{2}\right]$. Maximum shift/e.s.d. in the last cycle was <0.005; density in final difference map $\pm 0.27 \mathrm{e} \AA^{-3}$, no chemically significant features. Scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974). All calculations were performed on a PDP 11/73 computer using SDP-Plus (B. A. Frenz \& Associates Inc., 1983).

Atomic coordinates and details of geometry are given in Tables 1 and 2.* Fig. 1 is a view of the molecule prepared with ORTEPII (Johnson, 1976).

Discussion. The crystallographic inversion symmetry requires that the $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}$ carbon skeleton be fully anti. The conformation of the central S2-CH- $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{S} 2$ fragment is also maximally extended with a torsion angle S2$\mathrm{C} 7-\mathrm{C}(8)-\mathrm{C} 8^{\mathrm{i}}$ of $-174 \cdot 2^{\circ}$. The two geminal benzene rings are asymmetrically disposed relative to C 7 ; one ring ($\mathrm{C} 1-\mathrm{C} 6$) forms a dihedral angle of $115 \cdot 6^{\circ}$ with the $\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7$ plane whereas the other ($\mathrm{C} 9-\mathrm{C} 14$) forms a dihedral angle of $91 \cdot 4^{\circ}$ with the C7-S2-C9 plane. Weak steric repulsion between vicinal benzene rings results in S 1 and S 2 being displaced 0.037 (1)

[^1]

Fig. 1. A view of the $(\mathrm{PhS})_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{SPh})_{2}$ molecule showing the atomic numbering system.
and 0.091 (1) \AA from the relevant benzene planes. The steric repulsion is also apparent from the bond angles about the thioacetal C atom C 7 where the S-C-S angle of $108 \cdot 10(9)^{\circ}$ is smaller than the $\mathrm{C}-\mathrm{C}$-S angle, mean value $113.8(1)^{\circ}$. The mean $\mathrm{S}-\mathrm{C}_{s p^{3}}$ distance $\left[1.828\right.$ (2) \AA] and the mean $\mathrm{S}-\mathrm{C}_{\text {arom }}$ distance $[1.777$ (2) \AA] are in agreement with those reported previously, e.g. 1.826 (3) and $1 \cdot 776$ (3) \AA for these two bonds in tetraphenyl orthothiocarbonate (Kato, 1972). The $\mathrm{S}-\mathrm{C}_{\text {arom }}$ bond length of 1.777 (2) \AA is also in accord with the average value of $1.773 \AA$ reported for phenyl sulfides (Allen, Kennard, Watson, Brammer, Orpen \& Taylor, 1987).
The bond angles at sulfur [average $102 \cdot 9$ (1) ${ }^{\circ}$] are less than tetrahedral as is usually found in simple sulfides. The various $\mathrm{C}-\mathrm{C}$ bond lengths are in accord with the anticipated values. There are no untoward intermolecular contacts.

We are indebted to the NSERC Canada for the award of an operating grant (to GF) and a Visiting Professorship (to BK). We thank the Irish Depart-
ment of Education and UCC for a postgraduate studentship (to BMD).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
B. A. Frenz \& Associates Inc. (1983). SDP-Plus. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
Cohen, T., Ritter, R. H. \& Ouellette, D. (1982). J. Am. Chem. Soc. 104, 7142-7148.
Cronin, J. P., Dilworth, B. M. \& McKervey, M. A. (1986). Tetrahedron Lett. 27, 757-760.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kato, K. (1972). Acta Cryst. B28, 606-610.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Structure of (\boldsymbol{E})-2-Methyl-1,3-bis(2,4,5-trimethoxyphenyl)-1-pentene and 1-(2,4,5-Trimethoxyphenyl)-2-methyl-3-ethyl-4,6,7-trimethoxyindan* $\mathbf{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6}$: Two Asarone Dimers \dagger

By C. Lemini and J. J. Mandóoki
Departamento de Farmacología, Facultad de Medicina, UNAM, Circuito Interior, Ciudad Universitaria, Coyoacán 04510, Mexico DF, Mexico

and R. Cruz-Almanza \ddagger and R. A. Toscano
Instituto de Quimica, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Mexico DF, Mexico

(Received 24 April 1989; accepted 7 November 1989)

Abstract

E)-2-Methyl-1,3-bis(2,4,5-trimethoxyphe-nyl)-1-pentene, $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6}$, isomer (1), $M_{r}=416 \cdot 2$, monoclinic, $\quad P 2_{1} / n, \quad a=7.082$ (3), $\quad b=11.954$ (7), $c=27.136$ (17) $\AA, \quad \beta=94.14(4)^{\circ}, \quad V=2291$ (2) \AA^{3}, $Z=4, \quad D_{x}=1.21 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мо $K \alpha)=0.71069 \AA$, $\mu=0.8 \mathrm{~cm}^{-1}, F(000)=896, T=298 \mathrm{~K}, R=0.056$, $w R=0.063$ for 2901 (71.4%) reflections with $F>$ $3 \sigma(F)$. 1-(2,4,5-Trimethoxyphenyl)-2-methyl-3-ethyl-4,6,7-trimethoxyindan, isomer (2), $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6}, M_{r}$ $=416 \cdot 2$, monoclinic, $P 2_{1} / a, \quad a=17 \cdot 281$ (5), $\quad b=$

^[* IUPAC name: 1-ethyl-4,5,7-trimethoxy-2-methyl-3-(2,4,5-trimethoxyphenyl)indan. \dagger Contribution No. 978 of the Instituto de Quimica, UNAM. \ddagger To whom correspondence should be addressed.]

0108-2701/90/081542-04\$03.00
7.701 (1), $c=18.057$ (6) $\AA, \quad \beta=108.23(2)^{\circ}, \quad V=$ 2282 (1) $\AA^{3}, \quad Z=4, \quad D_{x}=1.21 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=$ $1.54178 \AA, \mu=6.7 \mathrm{~cm}^{-1}, F(000)=896, T=298 \mathrm{~K}$, $R=0.045, w R=0.061$ for 2601 (90.3%) reflections with $F>3 \sigma(F)$. The X-ray structures of (1) and (2) confirm the structures previously assigned on the basis of chemical and NMR spectral evidence. Isomer (1) is non-planar. In isomer (2) the fivemembered ring adopts an envelope conformation and the substituents at $\mathrm{C}(1)$ and $\mathrm{C}(3)$ are antiperiplanar to the methyl group at $C(2)$. In both isomers the orientation of the trimethoxyphenyl substituent is determined by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interactions. The packing in the crystal is entirely due to van der Waals forces.

[^0]: * E-mail address: CHMFERG@VM.UOGUELPH.CA

 0108-2701/90/081540-03\$03.00

[^1]: * Lists of structure factors, thermal parameters, calculated H -atom coordinates, mean-planes data and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52810 (28 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

